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Mathematical Morphology
first part: 2D



Mathematical Morphology

Mathematical Morphology was 

developed in France (G. Motheron e J. 

Serra, Ecole des Mines) and in different 

form with the name Image Algebra in 

USA (S. R. Sternberg, Michigan 

University).
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Logic operators between binary images



Preliminary Statements

 A  En, t  En

 Translation of A by a vector t

At = { c En | c=a+t, aA }

 Reflection of A

Ar= { c | c=-a, aA }

 Complement of A

Ac = En -A 4

A

A(2,1)

Ar

Ac



Minkowski sum (Dilation)

AB = { cEn | c=a+b, aA, bB }

AB =  Ab , bB

It can be easily shown that: AB = BA
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A B= { (0,0), (1,0) } 

A(0,0) A(1,0) AB



Dilation

 B is usually called structuring element
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A B= {(-1,0), (1,0) } 

A(-1,0) A(1,0) AB



Dilation
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Gonzales-Woods

Structuring 

element: 

Structuring 

element: 
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Dilation

B

ABA

Structuring 

element: 
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Dilation

B

ABA

Structuring 

element: 
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Dilation

B AB

A

Structuring 

element: 
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Dilation

B AB

A

Structuring 

element: 
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Dilation

C ABC

A B

Structuring 

element 1: 

Structuring 

element 2: 
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Dilation

C ABC

A B



Dilation
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Gonzales-Woods

Structuring 

element: 
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Minkowski difference (Erosion) 

A B = { cEn | c + bA, per ogni bB }

A B =  A-b bB

A B = { cEn | Bc  A

A B= { (0,0), (1,0) } 

A(-1,0)
A B

Structuring 

element: 



Erosion
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Gonzales-Woods

Structuring 

element: 

A B



Erosion
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Gonzales-Woods

Structuring 

element 1: 

Structuring 

element 2: 
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Erosion

A B

Structuring element: 

A B
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Erosion

A B

Structuring element: 

A B
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Erosion

A B

Structuring element: 

A B



Erosion

Original image              Eroded once             Eroded twice

Structuring 

element: 
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A + {} =  A - {} = A

A + {a} = A - {a}r = Aa, translation

A + B = (Ac – Br)c

A – B = (Ac + Br)c

(A+B)c=Ac -Br

A+Bt=(A+B)t 

A-Bt=(A-B)-t

Decomposition: B=B1+B2 +B3 +….+Bn 

A+B = (…(((A+ B1)+B2 )+B3) +….)+Bn

A-B = (…(((A- B1)-B2 )-B3) -….)-Bn

Dilation (+) and Erosion (-) 

properties

Erosion and Dilation Duality Theorem: Dilation and Erosion 

transformation bear a similarity, what one does to image 

foreground and the other does for the image background. 

Similar but not identical to De Morgan rule in Boolean Algebra
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(A+B)+C=A+(B+C)           (A-B)-C=A-(B+C)

(AB)+C=(A+C)(B+C)    (A  B)-C=(A-C)  (B-C)

A+(BC)=(A+B)(A+C)    A-(BC)=(A-C)(B-C)

A B(A+C) (B+C)        AB(A-C) (B-C)

BC(A-B)  (A-C)

(AB)+C (A+C)(B+C)  (A B)-C (A-C) (B-C)

A-(BC)(A-C)(B-C

Dilation (+) and Erosion (-) 

properties



Erosion and Dilation summary

Structuring 

element: 
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Closing operator

 C(A, K) = (A   K)   K

 Operator idempotent (the reapplication  has 
not further effects):  AC(A,K)=C(C(A,K),K) 

K

A

A   K

(A   K)  K

Structuring 

element: 




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Closing operator

 C(A, K) = (A   K)   K K

A

A   K

(A   K)   K

Structuring 

element: 









Closing

27

Gonzales-Woods

Structuring 

element: 
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Closing operator

 C(A, K) = (A   K)   K

K

A

A   K

(A   K)   K

Structuring 

element: 





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Opening operator

 O(A, K) = (A   K)   K

 Operator idempotent (the reapplication has 
not further effects):    O(O(A,K),K)=O(A,K)A K

A

A   K

(A  K)   K

Structuring 

element: 





Opening operator

O(A,K) = (A   K)  K
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K

A

(A   K)   K

A   K

Structuring 

element: 







Opening

31
Gonzales-Woods

Structuring

element: 



Opening

Erode, then dilate

Remove small objects, keep original 

shape

Before opening        After opening

Structuring 

element: 



Opening

 Erode, then dilate

 Fill holes, but keep original shape

Before Opening

Structuring 

element: 

After Opening



Opening Example

3x9 and 9x3 Structuring Element
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3*9

9*3

Volker Krüger & Rune Andersen



Opening and Closing: contour curvature

 Closing a picture is describable as 

pushing object B on top of the scan-

line graph, while traversing the graph 

according the curvature of B

 The peaks usually remains in their 

original form
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 Opening a picture is describable as 

pushing object B under the scan-line 

graph, while traversing the graph 

according the curvature of B

 The valleys usually remains in their 

original form

Structuring 

element: 



The ‘good’ contour

 Opening and Closing operator with a circle as structural elements change 

the boundaries as shown in figure: closing extends the boundary as if a ball 

rolles over the outer border; opening restricts it rolling the inner border

 The larger the circle the smoothed the result. The maximum resulting 

curvature is that of the structural element
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Arjan Kuijper



Opening vs

Closing

38
Gonzales-Woods

Structuring 

element: 



Opening

Closing

39Gonzales-Woods



Hit or Miss operator

A(J,K) = (A   J)(Ac K)

 con il vincolo JK=

Suitable for ‘template’ matching

40

Two structuring 

elements J and K 



Hit or Miss

J and K can be seen as a single 

template with three values:

Foreground points

Background points

Do not care points
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M



Hit or Miss

Search of isolated points(8-connection)

 A  J=A

42

J K

A Ac

Final 

Risult
Ac K



Hit or Miss

Search of isolated points(4-connection)

 A  J=A
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J

A Ac

Ac K

K

Final 

Risult



Hit or Miss
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Pixels satisfying the

background constraints

Pixels satisfying the

foreground constraints



Contours of binary regions :       A-(A K)

difference erosion

Contour found with 

larger mask

Using erosion to find contours

D.A. Forsyth



Contour example
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Gonzales-Woods

A-(A B)



Examples: Boundary Extraction

Contour

Internal: A-(A K)

External:  (A  K)Ā  or (A  K)-A

Double: (A  K)(A    K) = (A  K)-(A K)
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D.A. Forsyth



Example 2

48

Gonzales-Woods

A+Ac K



Iteration: disks in 4 and 8 connectivity

49

55

Structuring 

element: 

Structuring 

element: 

X = { C }; I=1 C = center pixel 

for i=1,R do X=(X  K) X = evolving image

R = radius (4 in ex.)



Recursion: Propagation

 Propagation in a connected component

 Let A be a set containing one or more connected 

components (mask), and consider an array X0 (of the 

same size of the array A) whose elements are 0s, 

except to a point of A foreground (marker).

 X = { X0 }; X = evolving image

 do D = X A = original image 

X = (X  K)A         K is the unitary circle

while(DX)                 in the adopted metric               
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Example: Connected Components

51

Gonzales-Woods

Structuring 

element: 



Hole

Filling

52
Gonzales-Woods

Structuring 

element: 

…



DT – algorithm
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1

Structuring 

element: 

Structuring 
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Distance transform

DT implementation using dilation and 

addition operators:

R =  R = evolving image

while(A) do at the end DT

R = R+A

A = A K

 done
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DT – local maxima

 The local maxima set 

is a compact object 

representation

 The object can be 

rebuilt as union of the 

maximal digital disks 

55

3

3 3 3 1

2 31

2 2

2 4 4 4

2 3
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Distance transform and MAT

 The Distance Transform (DT) is obtained by 

labeling all the pixels inside a binary object 

with their distance to the background

 Applying twenty iterations of the erosion 

operator (structural element: unit disk) 

twenty successive colored layers showing 

equi-distant contours from the background 

for a Manhattan distance metric are 

obtained

 Every pixel has a color corresponding to its 

distance label which increases going 

inwards. In practice, this value represents 

the side of the greatest digital disk having 

its centre on this pixel, which is completely 

contained in the binary object.

 Any pattern can be interpreted as the union 

of all its maximal digital disks (local 

maximum in DT). A maximal disk is a disk 

contained in the object that is not 

completely overlapped by any other disk.

 The set of the centers of the maximal disks 

with their labels, constitutes the MAT 56



Distance transform and MAT

57



Reverting progressively MAT

 A procedure to derive the MAT from the DT is 

based on the comparison of neighboring labels to 

establish whether a local maximum exists

 This transform is complete in the sense that it is 

possible to revert it, so obtaining the original 

object back

 This recovery process can be implemented by 

expanding every pixel belonging to the MAT, using 

the corresponding maximal disc whose size is 

given by the pixel label. The logical union of all 

such discs reconstructs the original object

 This figure shows the progressive reconstruction, 

starting from the set of disks corresponding to the 

highest level (two white disks) until the sixth and 

last monk’s profile, where discs, reduced to just 

one pixel, have been included

 This transform is compact since the full object 

may be described only by its labeled disk centers
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Distance between  two points

 Distance between X,YZ:

 A = { X }; D=A Z={}  A= evolving binary 

image

 while(YA) do F= original image (mask)

 Z = A Z= connected component

 A = (A  K)F

 D = D + A

 Done

 If A (A  K)F and Y has not been already 

reached: Z is not connected and Y is not 

reachable from X

 Following a path of max gradient we can 

find one of the minimum paths between 

X, Y
59

K

Y

X

4
4 4 1
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4 4 4 3 2 1
5 5 4 3 2 1 1

6 6 6 5 3 1 1
7 7 2
8 4 3 2 1
9 8 7 6 5 4 3 2 1
8 8 7 6 5 4

6
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8
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F

D

1
1

1
1

1
1

Structuring 

element: 



Weighted DT

 In this case all neighbors are not considered at the same 

distance (e.g. 8-connectivity)

 Example: a good approximation to the Euclidean 

distance in 8-connectivity (the result is about doubled) 

is given by:

w=

60
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Example

61



Minimum path 

4-conn
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Minimum path 

8-conn
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Minimum path

4-conn



Minimum path 

8-conn
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Minimum path 

4-conn

66



8-Convex Hull

 A set A is said to be convex if the straight 

line segment joining any two points in A 

lies entirely within A.

 The convex hull is the minimum n-sided 

convex polygon that completely 

circumscribes an object, gives another 

possible description of a binary object. An 

example is given in figure where a 

constrained 8-sided polygon has been 

chosen to coarsely describe the monk 

silhouette.

 To obtain the convex hull a simple 

algorithm propagates the object along the 

eight (more generally 2n) orientations and 

then: i) logically OR the opposite 

propagated segments; and ii) logically AND 

the four (more generally n) resulting 

segments. The contour of the obtained 

polygon is the convex hull.
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Original 

shape

Thickening 

with first 

mask  

Union of 

four 

thickenings

Use of thickening: Convex hull
 Convex hull: union of thickenings, each up to idempotence

D.A. Forsyth



Example of using convex hull



Pixel Parallelism: Processor arrays

 Processor Element (PE) includes local memory

 Image distributed over all PE

 All PE run the same program (SIMD)
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PE PE PE

PE PE PE

PE PE PE



Propagation: examples
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Short

CutMousebyte

Spacing



Mousebyte
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Minimum distance

73



Global OR (Or-sum-tree)
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Global OR (Or-sum-tree)
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